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Summary

Assume k independent populations are given which are distributed according to RJ1
; . . . ;RJk

�Ji 2 Q � R�. Taking samples of size n the population with the smallest J-value is to be selected.
Using the framework of Le Cam's decision theory (Le Cam, 1986; Strasser, 1985) under mild regu-
larity assumptions, an asymptotically optimal selection procedure is derived for the sequence of loca-
lized models. In the proportional hazards model with conditionally independent censoring, an asymp-
totically optimal adaptive selection procedure is constructed by substituting the unknown nuisance
parameter by a kernel estimator.

Key words: Selection procedure; Conditionally independent censoring; Propor-
tional hazards model.

1. Introduction

Suppose that p1; . . . ;pk are independent populations with distributions
RJ1

; . . . ;RJk
�Ji 2 Q � R�. The population with the smallest J-value is called the

best population. As in the theory of hypothesis testing, only under special condi-
tions one can find finite optimal selection rules based on samples from the popula-
tions. Therefore, we are looking for asymptotically optimal solutions to this problem.
To achieve this we apply the results of asymptotic decision theory.

If there is exactly one smallest J-value then for every reasonable sequence of
selection procedures fqng the probability of correct selection P�CS; qn� tends to
one if the sample size n (assumed to be equal for all populations) goes to infinity.
This makes a direct comparison between two sequences fq1

ng and fq2
ng of selec-

tion rules impossible. Similar to the theory of hypothesis testing we consider loca-
lized models R

J0�h1��
n
p ; . . . ;R

J0�hk��
n
p . We are now interested in selecting the population

with the smallest h-value. In this case the probability of correct selection con-
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verges to a value between zero and one and one can compare the efficiency of
fq1

ng and fq2
ng by the limits lim

n!1P�CS; qi
n�.

Liese (1996) used the general Hajek-Le Cam-bound of asymptotic decision theory
to establish an upper bound for the minimum probability of correct selection for a
general class of models following the indifference zone approach of Bechhofer
(1954). A sequence of selection rules is called asymptotically optimal if it attains
this upper bound. Liese (1996) derived asymptotically optimal selection procedures
in the location model. We assume a proportional hazards model which includes a
infinite dimensional nuisance parameter. Furthermore the lifetimes and censoring
times are assumed to be conditionally independent given a finite dimensional co-
variate. For this model we construct a selection procedure without any prior infor-
mation on the nuisance parameter and show that this procedure has the same
asymptotic efficiency as the best selection rule with known nuisance parameter.

2. Selection Procedures and Decision Theory

From each of the populations p1; . . . ;pk we take a sample of n independent obser-
vations Vi1; . . . ;Vin �i � 1; . . . ; k�. To be more general we assume first of all that
the Vij are random variables on a suitable measurable space �W;F�. In the special
case of real variables �W;F� � �R;B� holds, where B denotes the s-algebra of
borel sets on R. Let fRJi

; Ji 2 Q � Rg be the distribution of the measurements of
population pi. Let Qk � Q� . . .�Q denote the k-dimensional parameter space
of the parameter vector q � �J1; . . . ;Jk� and Rn

J � RJ � . . .� RJ the n-times
product measure of RJ. To simplify the notation we set Pn

q � Rn
J1
� . . .� Rn

Jk
. If

we treat the problem of selecting the best population as a decision problem the
corresponding decision space is D � f1; . . . ; kg.

Definition: A selection rule q is a discrete probability distribution

q�v� � �q1�v�; . . . ; qk�v�� ; qi�v� � 0 ;
Pk
i�1

qi�v� � 1 ; v 2 Wnk ;

where qi denotes the probability of selecting population pi.

Let J�1� � . . . � J�k� be the ordered values of the parameters J1; . . . ;Jk. The
selection of the population with the smallest parameter value J�1� is called cor-
rect selection (CS). Following Bechhofer's indifference zone approach we intro-
duce the preference zone for fixed g > 0 as Qg � fq � �J1; . . . ;Jk� :
q 2 Qk;J�1� � J�2� ÿ gg: Only in special cases (for example in exponential fami-
lies) do uniformly best (permutation invariant) selection rules exist. Therefore we
focus on selection procedures q*, which guarantee high probability of correct se-
lection in the worst case of parameter configuration (least favorable configuration),
so-called minimax solutions of the form inf

q2Qg

Pn
q�CS; q*� � inf

q2Qg

Pn
q�CS; q�: To

study the minimax risk we systematically employ results from asymptotic decision
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theory. We have to impose some regularity conditions on the distribution family
fRJ; J 2 Qg, to which the distributions RJ1

; . . . ;RJk
of the populations p1; . . . ;pk

belong. Furthermore, let I�J� be the Fisher information of fRJ; J 2 Qg and sup-
pose _Q is not empty, where _Q is the interior of Q.

Assumption (A1): The distribution family fRJ; J 2 Qg is L2�J0�-differentiable
with derivation _lJ0

and Fisher information I�J0� > 0 8J0 2 _Q.

For the notion of L2-differentiability we refer to Witting (1985). Similar to the
asymptotic theory of statistical tests we localize our experiment. To be more pre-
cise we fix q0 � �J0; . . . ;J0� 2 _Q� . . .� _Q. Note that for each population the
corresponding model is localized at the same J0. Set

Hn � h : h � �h1; . . . ; hk� 2 Rk; J0 � h1���
n
p ; . . . ;J0 � hk���

n
p

� �
2 _Q� . . .� _Q

� �
;

and Pn; h � Rn
J0�h1��

n
p
� . . .� Rn

J0�hk��
n
p
�h 2 Hn�, and introduce the statistical experiment

for our selection problem as

En � �Wnk;F nk;Pn;h; h 2 Hn� : �1�
A first step is to derive an upper bound for inf

h2Hn

Pn;h�CS; qn� for any sequence of

selection rules. This can be done with the help of the Hajek-Le Cam-bound of
asymptotic decision theory. Introduce Hn;h � fh : h 2 Hn; h�1� � h�2� ÿ hg and de-
note by Kc the ball around the origin with radius c > h. It holds (Liese (1996),
Theorem 1) that

lim sup
n!1

inf
h2Hn;h\Kc

Pn;h�CS; qn� �
�

Fkÿ1�x � h
�����������
I�J0�

p �F�dx� �2�

with F as the distribution function of the standard normal distribution. A next
step is to construct a sequence of selection rules which attains the upper bound
and is optimal in this sense. Using the notation V � �V1; . . . ;Vk� and
Vi � �Vi1; . . . ;Vin� the central sequence of En from (1) is a k-dimensional vector

Zn � �Z1; n; . . . ; Zk; n� with Zi;n�V� � 1���
n
p

I�J0�
Pn
j�1

_lJ0
�Vij� �i � 1; . . . ; k�.

Let #A denote the cardinality of a set A. This leads to the following theorem
(see Liese (1996), Proposition 1):

Theorem 1: Let assumption (A1) be fulfilled and define A�Zn� � f1; . . . ; kg by

A�Zn� :� fi : Zi; n � min
1�j�k

Zj; ng : �3�

Introduce qn�Zn� � q1; n�Zn�; . . . ; qk; n�Zn�
ÿ �

with

qi;n�Zn� �
1

#A�Zn� if i 2 A�Zn�

0 if i =2 A�Zn�

8<: �4�

Biometrical Journal 40 (1998) 8 965



the discrete uniform distribution on A�Zn�, i.e. it is the rule which selects the
population according to the smallest component in the central sequence and break
ties randomly. Then fqng is an asymptotically optimal selection rule for the selec-
tion problem En in (1) in the sense that it attains the upper bound in (2).

The above theorem is the key to deriving asymptotically optimal selection pro-
cedures. For concrete models it is necessary to calculate the central sequence ex-
plicitly. This is the content of the following section.

3. The Proportional Hazards Model

Let Xi1; . . . ;Xin �i � 1; . . . ; k� be lifetimes (nonnegative continuous random vari-
ables) from k independent populations p1; . . . ;pk. For example the data may re-
present the lifetimes of k groups of patients with different treatments in a clinical
trial. Often the experimenter is interested in ascertaining which population is asso-
ciated with the longest lifetimes. The parameters J1; . . . ;Jk characterize the qual-
ity of the populations p1; . . . ;pk. In a stochastically decreasing model like the
proportional hazards model the population with the smallest J-value generates the
largest random variables, which is why this population is called the best.

In practice is it sometimes impossible to measure lifetimes directly due to the
occurrence of censoring events. The present model includes such incomplete data
in case of conditionally independent censoring.

Let Yi1; . . . ; Yin �i � 1; . . . ; k� be the censoring times. The Xij are not directly
observable, rather, one is able to observe only �Tij;Dij�, where Tij � min fXij;Yijg
and Dij � 1�Xij � Yij� is a binary random variable. It turns out that in the pre-
sent model asymptotically optimal selection procedures depend on the (un-
known) survival function of the lifetimes. The problem of estimating the survival
function in the presence of random right censoring has been extensively studied.
Most research has centered on the independent censoring model, in which the
censoring times Yij are stochastically independent of the lifetimes Xij. Under this
model the observable data �Tij;Dij� provide sufficient information to uniquely
determine the marginal distribution of Xij and the Kaplan-Meier-estimate (Ka-
plan and Meier, 1958) (KME) is the appropriate estimate of the survival function.

But the assumption of independence between lifetimes and censoring times is
not always true. Lagakos (1979) mentioned the following example of a situation,
in which the independence assumption is of questionable validity: a clinical trial
in which those patients experiencing a specific critical event such as metastatic
spread of disease are, by design, removed from study and no longer followed for
survival time.

If the only observations available are the pairs �Tij;Dij�, the independence as-
sumption is completely untestable. It has been shown by Tsiatis (1975) `̀ that
there always exist independent censoring models consistent with any probability
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distribution for the observable pair �T ;D�º (Lagakos). For an excellent review of
the field of dependent censoring see Moeschenberger and Klein (1995).

For these reasons we introduce a model that was motivated by Cheng (1989)
and Arnold and Kim (1992). This model includes a finite dimensional covariate
C such as age, blood pressure, body mass index or alcohol intake in addition to
the (censored) lifetimes of the patients. The observed sample information is now
Vij � �Tij;Dij;Cij� with Vij from section 2.

It is necessary to specify the type of dependence between lifetimes and cen-
soring times. We assume that X and Y are conditionally independent given
C � c. Let PC be the distribution of the covariate C, PJ�� j c� and Q�� j c� de-
note the conditional distributions of lifetimes and censoring times given C � c
and FJ�x j c� and G�y j c� be the cumulative distribution functions (c.d.f.) of
PJ�� j c� and Q�� j c�, respectively. We suppose a proportional hazards model of
the form

FJi
�x j c� � 1ÿ �1ÿ Fo�x j c��Ji �Ji 2 Q � �0;1�� �5�

for the lifetimes of the populations p1; . . . ;pk with an unknown basic c.d.f.
Fo�x j c� (w.r.t. x). Po�� j c� stands for the distribution associated with Fo�x j c�.
Furthermore, it is necessary to make the following assumptions:

Assumption (A2): Po�� j c�, Q�� j c� and PC��� are absolutely continuous distri-
butions with densities f o�x j c�, g�x j c� and pC�c�. Additionally it holds that
P�X � Y� > 0.

Note that P�X � Y� > 0 means censoring does not occur with probability one.
In view of (A2) there exists a conditional density function fJ�x j c� w.r.t. FJ�x j c�.

Lemma 1: Let the assumption (A2) be fulfilled. Then the three-dimensional dis-
tribution family fP*

J; J 2 �0;1�g of �X; Y ;C� is L2�J0�-differentiable

8J0 2 �0;1� with L2-derivation _LJ0
�x; c� � 1

J0

ÿ
1� ln �1ÿ FJ0

�x j c��� and Fisher
information I�J0� � 1=J2

0.

Proof: Because of assumption (A2) the density of the random vector �X; Y ;C�
in the proportional hazards model is of the form hJ�x; y; c� �
fJ�x j c� g�y j c� pC�c�. In view of Witting (1985), Theorem 1.194 it is sufficient
to show the continuity of the Fisher information w.r.t. the parameter J. The deriva-

tion of the density w.r.t. J is of the form
hJ�x; y; c�

dJ
� _hJ�x; y; c� � _fJ�x j c�

� g�y j c� pC�c� and consequently
_hJ0

hJ0

�x; y; c� �
_fJ0

fJ0

�x j c�: Furthermore, fJ�x j c�
� Jf o�x j c� �1ÿ Fo�x j c��Jÿ1 and

_fJ�x j c� � f o�x j c� �1ÿ Fo�x j c��Jÿ1

� J�1ÿ Fo�x j c��Jÿ1 ln �1ÿ Fo�x j c�� :
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Hence

_LJ0
�x; c� �

_fJ0

fJ0

�x j c� � 1

J0
� ln �1ÿ Fo�x j c��

� 1

J0

ÿ
1� ln �1ÿ FJ0

�x j c���
and

I�J0� � 1

J2
0

� �
�1� ln �1ÿ FJ0

�x j c���2 PJ0
�dx j c� PC�dc� � 1

J2
0

which completes the proof. &
The following lemma is a modification of Lemma 2 from Janssen (1989). It

gives the L2-derivation of the distribution family fRJ;J 2 Qg, to which the obser-
vable data V � �T ;D;C� belong.

Lemma 2: Let assumption (A2) be fulfilled. Then fRJ; J 2 Qg is L2-differenti-
able with derivation

_lJ0
�t; d; c� � d _LJ0

�t; c� � �1ÿ d� �
�t;1�

_LJ0
�x; c�PJ0

�dx j c���1ÿ FJ0
�t j c��:

Note that the regularity assumptions are made on the distribution of the non-
observable random variable �X; Y ;C�. To apply Theorem 1 it is necessary to check
these assumptions w.r.t. the distribution of the censored observation �T ;D;C�.
This is the content of the next lemma. The following table illustrates the notation
used for observable and non-observable data:

Lemma 3: Let assumption (A2) be fulfilled. Then for the proportional hazards
model (5) the family fRJ; J 2 �0;1�g is L2�J0�-differentiable with derivation

_lJ0
�t; d; c� � 1

J0
�d� ln �1ÿ FJ0

�t j c��� �6�
and it holds that

I�J0� � 1

J2
0

� �
�1ÿ G�x j c�� PJ0

�dx j c� PC�dc� > 0 8J0 2 �0;1� :

Proof: Lemma 1 and Lemma 2 imply for the L2-derivation of the proportional
hazards model with conditional independent censoring
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Notation for observable and non-observable data

non-observable data observable data

random variable �X; Y;C� �T ;D;C�
distribution P*

J RJ

L2-derivation _LJ
_lJ



_lJ0
�t; d; c� � d

1

J0
� ln �1ÿ Fo�t j c��

� �

� �1ÿ d�

�
�t;1�

1

J0
� ln �1ÿ Fo�x j c��

� �
PJ0
�dx j c�

1ÿ FJ0
�t j c�

� 1

J0
�d� ln �1ÿ FJ0

�t j c��� : �7�

For the Fisher information the following holds in view of the conditional indepen-
dence

I�J0� �
� � �

_l2J0
�t; d; c� RJ0

�dt; dd; dc�

� 1

J2
0

� �
ln2 �1ÿ FJ0

�t j c�� �1ÿ FJ0
�t j c�� Q�dt j c� PC�dc�

� 1

J2
0

� �
�1� ln �1ÿ FJ0

�t j c���2 �1ÿ G�t j c��PJ0
�dt j c� PC�dc�:

Integrating-by-parts yields� �1� ln �1ÿ FJ0
�t j c���2 �1ÿ G�t j c�� PJ0

�dt j c�
� � �1ÿ G�t j c�� PJ0

�dt j c�
ÿ � ln2 �1ÿ FJ0

�t j c�� �1ÿ FJ0
�t j c�� Q�dt j c� : &

Using the notation Ti � �Ti1; . . . ; Tin�, Di � �Di1; . . . ;Din�, Ci � �Ci1; . . . ;Cin�
Lemma 2 and Theorem 1 lead to the following theorem, which gives the concrete
form of optimal selection procedures in the model under consideration:

Theorem 2: Let assumption (A2) be fulfilled and introduce the k-dimensional
statistic Sn � �S1; n�T1;D1;C1�; . . . ; Sk; n�Tk;Dk;Ck�� by

Si; n�Ti;Di;Ci� � 1���
n
p Pn

j�1
�Dij � ln �1ÿ FJ0

�Tij j Cij��� �8�

for i � 1; . . . ; k. Then the selection rule qn�Sn� � �q1; n�Sn�; . . . ; qk; n�Sn�� with

qi; n�Sn� �
1

#A�Sn� if i 2 A�Sn�

0 if i =2 A�Sn�

8<: �9�

is asymptotically optimal in the proportional hazards model (5) with conditionally
independent censoring in the sense that it attains the upper bound in (2).
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Note that the optimal selection procedure does not depend on the censoring
distribution. This changes if the censoring distribution is not equal over all popula-
tions.

4. Adaptive Selection

An asymptotically optimal selection rule was given in Theorem 2. Unfortunately,
the statistics Si; n in (8) include the survival function 1ÿ FJ0

�t j c� �
�1ÿ Fo�t j c��J0 . The essential point now is to replace this unknown function with
a reasonable estimate. Because of the dependence between lifetimes and censoring
times the KME is not a consistent estimate in this model. It turns out that it is
easier to estimate the cumulative hazard function instead of 1ÿ FJ0

�t j c�. Let

L�t j c� � ÿln �1ÿ FJ0
�t j c�� �

�t
0

PJ0
�dx j c�

1ÿ FJ0
�x j c�

be the conditional cumulative hazard function (c.h.f.) of FJ0
�t j c� given C � c.

Under the conditional independence assumption the upper expression is identifiable

(Beran, 1981). Using the notation A�t; c� :� pC�c�
�t
0

�1ÿ G�x j c��PJ0
�dx j c� and

B�t; c� :� pC�c� �1ÿ G�t j c�� �1ÿ FJ0
�t j c�� the conditional c.h.f. can be written

in the form

L�t j c� �
�t
0

pC�c� �1ÿ G�x j c�� PJ0
�dx j c�

pC�c� �1ÿ G�x j c�� �1ÿ FJ0
�x j c�� �

�t
0

A�dx; c�
B�x; c� : �10�

Let KbN �x; y� �
1

bN
K

x ÿ y

bN

� �
be a kernel with bandwidth bN . Note that the func-

tions A and B can be written in the form A�t; c� � pC�c� P�T < t;D � 1 j c� and
B�t; c� � pC�c� P�T � t j c�. Consequently, their natural estimates are

AN�t; c� � 1

N

Pk
i�1

Pn
j�1

1�Tij < t;Dij � 1� KbN �Cij; c� �11�

and

BN�t; c� � 1

N

Pk
i�1

Pn
j�1

1�Tij � t� KbN �Cij; c� : �12�

N � kn denotes the whole sample size from all k populations. Because of (10)

L̂N�t j c� :�
�t
0

AN�dx; c�
eN � BN�x; c� �13�
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is a reasonable estimate for the conditional c.h.f. Here eN denotes a monotone
decreasing sequence of positive real numbers converging to zero. eN is only used
to keep the denominator away from zero. Furthermore we introduce the sequence

of statistics LN�t j c� �
�t
0

A�dx; c�
eN � B�x; c� with eN from (13).

Theorem 3: Let assumption (A2) be fulfilled, let eN > 0 be a monotone sequence
with lim

N!1
eN � 0 and introduce ~Sn :� �~S1; n�T1;D1;C1�; . . . ; ~Sk; n�Tk;Dk;Ck�� by

~Si; n�Ti;Di;Ci� � 1���
n
p Pn

j�1
�Dij ÿLN�Tij j Cij�� �14�

for i � 1; . . . ; k. Then the selection rule ~qn � �~q1; n; . . . ; ~qk; n� with

~qi; n �
1

#A�~Sn�
if i 2 A�~Sn�

0 if i =2 A�~Sn�

8<:
is asymptotically optimal in the proportional hazards model (5) with conditionally
independent censoring.

Proof: It is sufficient (see Wienke (1996), inequation 4.38) to estimate the ex-
pression E�LN�T j C� ÿL�T j C��2 to show the convergence to zero for N !1.
Furthermore,�t

0

A�dx; c�
eN � B�x; c� �

�t
0

A�dx; c�
eN�1 � B�x; c� �

�t
0

A�dx; c�
B�x; c� 8N

and with T � min fX; Yg

E

�T
0

A�dx;C�
B�x;C�

0@ 1A2

� EL2�T j C�

� E ln2 �1ÿ FJ0
�T j C��

� E ln2 �1ÿ FJ0
�X j C��

�
� �

ln2 �1ÿ FJ0
�x j c��PJ0

�dx j c�PC�dc� � 2 :

Consequently, the Theorem on Monotone Convergence (Shiryayev, 1984) implies

lim
N!1

E�LN�T j C� ÿL�T j C��2

� lim
N!1

E

�T
0

A�dx;C�
eN � B�x;C� ÿ

�T
0

A�dx;C�
B�x;C�

0@ 1A2

� 0 : &
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To state the main result some regularity assumptions are necessary.

Assumption (A3):
�

x2K�x� dx <1,
�

xK�x� dx � 0, sup
x

K�x� � Kmax <1
and

�
K�x� dx � 1.

Assumption (A4): Let pC�c�; F�t j c� and G�t j c� be twice differentiable w.r.t.
c with bounded derivations for all t. Especially assume pC�c� < Cmax <1.

Lemma 1: Assume that the conditions (A3) and (A4) are fulfilled. Then there
exist suitable constants L1 and L2 with

E�AN�T ;C� ÿ A�T ;C��2 � L1 b4
N �

1

Nb2
N

� �
and

E�BN�T ;C� ÿ B�T ;C��2 � L2 b4
N �

1

Nb2
N

� �
:

Proof: Let �T ;C� � �T11;C11� and L be a suitable constant. Then

E�AN�T11;C11� ÿ A�T11;C11��2

� E�E��AN�T11;C11� ÿ A�T11;C11��2 j �T11;C11��� � EgN�T11;C11�
with

gN�t; c� � E
1

N

P
�i; j�6��1;1�

1�Tij < t;Dij � 1� Kb�Cij; c� ÿ A�t; c�
 !2

� 2V
1

N

P
�i; j�6��1;1�

1�Tij < t;Dij � 1� Kb�Cij; c�
 !

� 2 ÿ 1

N
E1�T11 < t;D11 � 1� Kb�C11; c�

�
� E1�T11 < t;D11 � 1� Kb�C11; c� ÿ A�t; c�

�2

� L

Nb2
N

� L

N2b2
N

� Lb4
N

� L1 b4
N �

1

Nb2
N

� �
as a consequence of Proposition 3.9 of RuÈschendorf (1988) and the first state-
ment follows. The proof of the second one is analogous. &

Theorem 4: Let the assumptions (A2), (A3) and (A4) be fulfilled, bN � Nÿ
1
6,

eÿ1
N � o�N 1

12� and Ŝn :� �Ŝ1; n�T1;D1;C1�; . . . ; Ŝk; n�Tk;Dk;Ck�� with

Ŝi; n�Ti;Di;Ci� � 1���
n
p Pn

j�1
�Dij ÿ L̂N�Tij j Cij�� �15�
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for i � 1; . . . ; k. Then the selection rule q̂n � �q̂1; n; . . . ; q̂k; n�

q̂i; n �
1

#A�Ŝn�
if i 2 A�Ŝn�

0 if i =2 A�Ŝn�

8><>:
with A from (3) is asymptotically optimal for the proportional hazards model (5)
with conditionally independent censoring.

5. Simulation Experiments

As Theorem 4 gives only asymptotic results, simulation studies are needed. For
this purpose a PASCAL program was written by the author. First we have to
specify a concrete model. Therefore we fix the distribution of the covariate C by
its distribution function FC�x� � 1ÿ eÿxÿ1

2x2
(Rayleigh-distribution). We calculate

lifetime data from three different populations �k � 3� with distribution func-
tions FJi

�x j c� � 1ÿ eÿ�1�8�1ÿeÿc��Jix (see (5)) and censoring times using
G�x j c� � 1ÿ eÿ3:33�1�8�1ÿeÿc�� x. This implies censoring of 25 percent of the life-

times. Furthermore, let J1 � J2 � 10� 10���
n
p and J3 � 10. Consequently, p3 repre-

sents the best population. The kernel in (11) and (12) was chosen by

K�x� � ÿ 3

4
x2 � 3

4
if x 2 �ÿ1; 1� ;

0 if x =2 �ÿ1; 1� :

8<:
The simulations are based on the following steps:
1. simulation of the covariates Cij (using uniformly distributed random variables

on the interval �0; 1� generated by a standard PASCAL routine),
2. simulation of lifetimes Xij and censoring times Yij conditional on Cij,
3. calculation of �Tij;Dij;Cij� as a function of �Xij; Yij;Cij�,
4. calculation of statistic (15) and counting events of correct selection.
The following table gives the probability of correct selection (estimated by simu-

lations) for different sample sizes and selection procedures. The procedure Opti-
mal (using the usually unknown distribution/hazard function in (15)) reached the
upper Hajek-Le Cam-bound for growing sample size n. Poor results are given by
the procedure Mean which selects the population with the largest mean of ob-
served life/censoring times caused by departure from normal distribution and cen-
soring. The simulation results indicate a slight advantage of the proposed proce-
dure in Theorem 4 (Adaptive) w.r.t. the procedure using the KME (KM) because
of the violation of the independent assumption in the censoring model.
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6. Discussion

The model considered in this article offers an alternative to the usual independent
censoring model and allows an application of results from survival analysis to
selection procedures. The lifetimes and censoring times are assumed to be condi-
tional independent. Simulations based on this model show that the KME can pro-
duce errors in estimation of survival probabilities. In the present setting, the value
of the proportional hazards model with conditional independent censoring may lie
in producing a class of survival function estimates so that the effect of incorrectly
assuming the independent censoring model can be assessed.

Acknowledgements

The author is grateful to Professor F. Liese (Rostock) for many helpful comments
and discussions on an earlier version of this manuscript.

974 A. Wienke: Asymptotically Optimal Adaptive Selection Procedure

Table 2

Probability of correct selection using different methods to estimate the unknown distribution/
cumulative hazard function in (15). The first column contains the sample size n of each
population. Simulation results are presented for the suggested adaptive procedure of Theo-
rem 4 (Adaptive), the procedure using the Kaplan-Meier-estimator (KM), the procedure
which selects the population with the largest mean of observed life/censoring times (Mean)
and the procedure with known distribution function (Optimal). The last column (Le Cam)
shows the Hajek-Le Cam-bound. Simulation of data with 2� 104 replications each

n Adaptive KM Mean Optimal Le Cam

5 0.512 0.512 0.480 0.550 0.594
15 0.530 0.526 0.496 0.567
25 0.553 0.542 0.494 0.579
35 0.557 0.540 0.496 0.580
50 0.565 0.546 0.495 0.581
75 0.569 0.551 0.499 0.584

100 0.566 0.545 0.503 0.587
150 0.567 0.556 0.508 0.590
200 0.569 0.547 0.501 0.588
250 0.570 0.550 0.500 0.584
350 0.565 0.550 0.505 0.585
500 0.565 0.555 0.500 0.585
750 0.569 0.555 0.502 0.597



Appendix

Proof of Theorem 4: Similar to the proof of Theorem 3 the convergence of ex-
pression lim

N!1
E�L̂N�T j C� ÿLN�T j C��2 � 0 is to be shown with LN�T j C�

and L̂N�T j C� from (14) and (15), respectively. With �LN�t j c� :�
�t
0

A�dx; c�
eN � BN�x; c�the inequation

E�L̂N�T j C� ÿLN�T j C��2 � 2E�L̂N�T j C� ÿ �LN�T j C��2

� 2E��LN�T j C� ÿLN�T j C��2 �A:1�
holds. To estimate the first expression we remark that

L̂N�t j c� ÿ �LN�t j c� �
�t
0

AN�dx; c�
eN � BN�x; c� ÿ

�t
0

A�dx; c�
eN � BN�x; c�

�
�t
0

B*N�x; c� A*N�dx; c� �A:2�

with A*N�t; c� � AN�t; c� ÿ A�t; c� and B*N�t; c� � �eN � BN�t; c��ÿ1. Integrating-by-
parts (A*N�t; c� and B*N�t; c� are left continuous functions w.r.t. t, see Shiryayev,
1984) implies�t

0

B*N�x; c� A*N�dx; c� � A*N�t; c� B*N�t; c� ÿ
�t
0

A*N�x; c� B*N�dx; c� : �A:3�

Using B*N�t; c� � eÿ1
N and Lemma 4 it holds that

E�A*N�T ;C� B*N�T ;C��2 � 1

e2
N

E�A*N�T ;C��2

� 1

e2
N

L1 b4
N �

1

Nb2
N

� �
: �A:4�

Now we estimate the expression
�t
0

A*N�x; c� B*N�dx; c�. B*N�t; c� is piecewise con-
stant w.r.t. t:

jB*N�t � 0; c� ÿ B*N�t; c�j � 1

eN � BN�t � 0; c� ÿ
1

eN � BN�t; c�
���� ����

� 1

e2
N

jBN�t � 0; c� ÿ BN�t; c�j

� 1

e2
N

Kmax

NbN
:
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Consequently

�t
0

A*N�x; c� B*N�dx; c�
������

������ � Kmax

e2
NNbN

Pk
i�1

Pn
j�1
jA*N�Tij; c�j

and

E

�T
0

A*N�x;C� B*N�dx;C�
0@ 1A2

� K2
max

e4
NN2b2

N

N
Pk
i�1

Pn
j�1

E�A*N�Tij;C��2

� K2
max

e4
Nb2

N

L1 b4
N �

1

Nb2
N

� �
: �A:5�

Combining (A.2), (A.3), (A.4) and (A.5) with some constant L3 it holds that

E�L̂N�T j C� ÿ �LN�T j C��2 � L3

e4
Nb2

N

b4
N �

1

Nb2
N

� �

� L3
o�N 1

12�
N

1
12

 !4

! 0

as N tends to infinity. Now we deal with the second expression in (A.1).
Schwarz's inequality yields

E��LN�T j C� ÿLN�T j C��2 � E

�T
0

jBN�x;C� ÿ B�x;C�jA�dx;C�
�eN � B�x;C�� �eN � BN�x;C��

0@ 1A2

� 1

e4
N

E

�T
0

jBN�x;C� ÿ B�x;C�jA�dx;C�
0@ 1A2

� 1

e4
N

E

�T
0

�BN�x;C� ÿ B�x;C��2 A�dx;C� A�T ;C� :

Introducing ~BN�t; c� :� 1

N

Pk Pn
�i; j�6��1; 1�

1�Tij � t� Kb�Cij; c� the difference

BN�t; c� ÿ ~BN�t; c� � Kmax

NbN
! 0 �A:6�

is asymptotically negligible.
Using jN�t; c� :� � ~BN�t; c� ÿ B�t; c��2 it holds (similar to the proof of Lemma 4)

with the notation of conditional expectation
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E
�T
0

� ~BN�x;C� ÿ B�x;C��2 A�dx;C�

� E
� � � �

jN�x; c� I�0;t��x� A�dx; c� RJ0
�dt; dd; dc�

� � � � jN�x; c� I�x;1��t� A�dx; c� �1ÿ FJ0
�t j c�� Q�dt j c� PC�dc�

� � � � jN�x; c� I�x;1��t� A�dx; c� �1ÿ G�t j c�� PJ0
�dt j c� PC�dc�

� E
� � �

jN�x; c� I�x;1��t� pC�c� �1ÿ G�x j c�� PJ0
�dx j c� Q�dt j c� PC�dc�

� E
� � �

jN�x; c� I�x;1��t� pC�c� �1ÿ G�x j c�� PJ0
�dx j c� PJ0

�dt j c� PC�dc�

� 2E
� �

jN�x; c� pC�c� �1ÿ G�x j c�� PJ0
�dx j c� PC�dc�

� 2E� ~BN�T ;C� ÿ B�T ;C��2pC�C� :

Using relation (A.6) it follow that

E��LN�T j C� ÿLN�T j C��2

� 2Cmax

e4
N

E

�T
0

g�BN�x;C� ÿ ~BN�x;C��2 A�dx;C�

� 2Cmax

e4
N

E

�T
0

� ~BN�x;C� ÿ B�x;C��2 A�dx;C�

� 2

e4
N

K2
maxC2

max

N2b2
N

� 4

e4
N

C2
maxE� ~BN�T ;C� ÿ B�T ;C��2

� L4

e4
NN2b2

N

� L4

e4
N

E�BN�T ;C� ÿ B�T ;C��2

� L4

e4
NN2b2

N

� L4

e4
N

b4
N �

1

Nb2
N

� �

� L4

N
4
3

1� o�N 1
12�

N
1
12

 !4

! 0

as N tends to infinity. This completes the proof. &
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